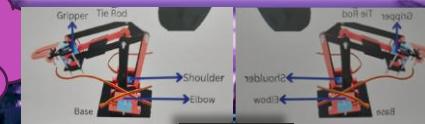


BY

K S VENKATRAM (AOEC, Gap Analyst) and


AAKKASH K V (PGDM 2021-2023 Ops and Analytics &

BTECH AUTOMOTIVE ENGINEERING 2017-2021)

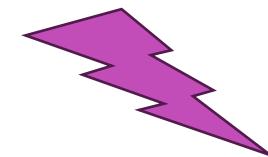
NSC CERTIFIED RESPONDENT LEVEL 7

- VEHICLE FITNESS

TGMB-
AERO-
CLOUD

TGMB-
AERO-
CLOUD

v1.07.2025


1/1/2025, 2/1/2025, 3/1/2025,
4/1/2025, 5/1/2025, 31/1/2025,
2/2/2025, 3/2/2025, 30/7/2025,
05/11/25

OBJECTIVES OF THE NSSR RS VISION

Key Opinion Leadership in Future Analytics and Business Intelligence

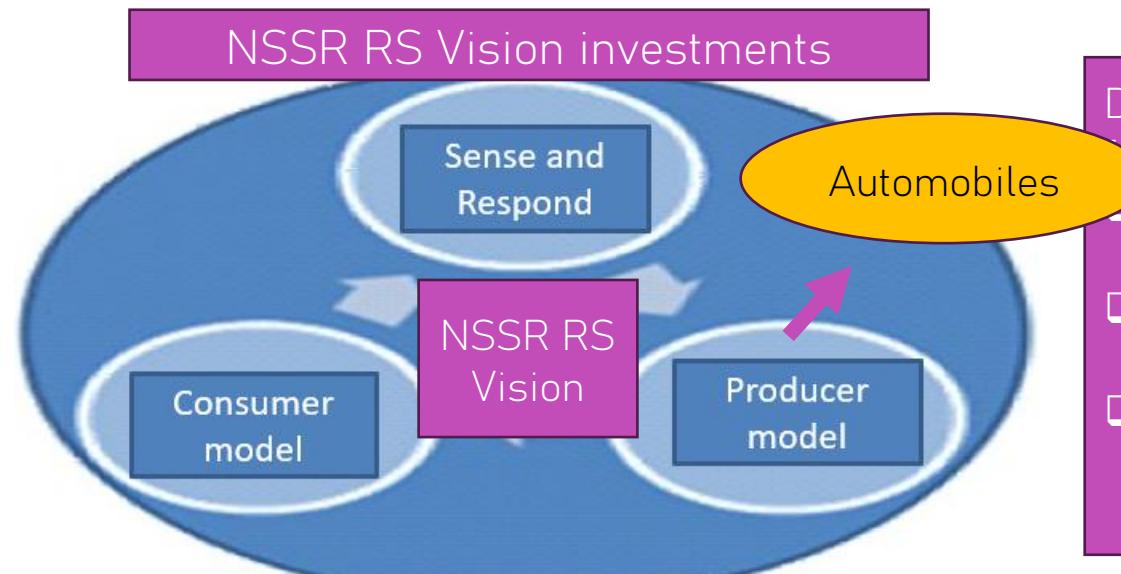
AOEC proposes the following 7 case studies and analytics for the year 2025-2026

- ❑ Case study for Brand Equity or Brand Experience Improvement and preparation of reports
- ❑ Case study for Proactive Emphasis on Sustainable Quality to improve brand equity and preparation of reports
- ❑ Case study for Market Penetration Analysis to improve branding and preparation of reports
- ❑ Case study for Service Centre Improvement and preparation of reports
- ❑ Case study for SMART Service Anywhere Anyhow (SAA) strategies and preparation of reports
- ❑ Case study for SMART Brand Analytics and preparation of reports
- ❑ Case study for Continual Quality Improvement and preparation of reports
- ❑ Case study for Vision enabled Route editioning for **NavSite Landscapes (and Fast Track PRM Supportive insights)**

PERFORMANCE METRICS CONSIDERED WITH THE DEVELOPMENT OF NSSR RS MONITORS AND D2L NAVSITE VEHICLES

- 1. Market share
- 2. Return on total assets
- 3. Average annual market share growth for the past ___ years
- 4. Average annual sales growth over the past ___ years
- 5. Average annual growth in return on total assets over the past ___ years
- 6. Value addition via the NSSR RS Vision and Average operations cost
- 7. Value addition via the NSSR RS Vision and Overall service cost
- 8. Value addition via the NSSR RS Vision and Overall customer service costs
- 9. Overall competitive position for forward lifetime analytics

FORWARD LIFETIMES



COST PROFILE FOR A DEALERSHIP

Total costs for dealership = Costs (HO/dealership/service centre) + Costs (Operations) + Costs (Manpower) + Costs (Processes) + Costs (Deeper Interaction Links) + Costs (Measures and Metrics) + Costs (Tools and Technology) + Cost (Administration) + Costs (Inventory) + Costs (Spares) + Costs (CRM) + Costs (NSSR RS VISION investments in management methodologies)

Deeper Interaction Links for

- TMS Route Assurance
- Viewpoint triangulation
- Social Performance Teaming
- NSSR RS Accountability

Deeper Interaction Links for D2L management of

- Assistance system (Steer)
- Resilience system (Harness)
- Collision Detection and Avoidance system (Hover)

- Driver Fitness
- Vehicle Fitness
- Road system understanding
- Alpha Assistance

NSSR RS PROGRAMME

BRAND EQUITY ESSENTIALS

Branding for the Automotive sector is known to mean

- ✓ Brand Assertion
- ✓ Brand Satisfaction
- ✓ Brand Stability
- ✓ Brand Scalability

NSSR RS
VISION

Some mainline Market Penetration strategies are as follows:

1. Micro focus and optimization in pricing strategy (via tiered pricing, promotions & discounts, strategic adjustment to suit buying behaviour)
2. Intensive marketing
3. Widespread (or geo-codified) distribution channels
4. Brand partnerships
5. Brand sponsorship of events/community welfare projects
6. Enhancing of Service Quality
7. Customer Loyalty programmes/incentives
8. Management System relativity for the driver & co-passengers, social performance teaming and Future Criteria Accountability

The Ansoff Matrix

BRAND EQUITY ESSENTIALS

Potential advantages of Market penetration strategies

1. Lowers risk of market dynamics and customer buying behaviour
2. Cost efficiency in branding and brand equity development
3. Greater customer loyalty
4. Increased market share
5. Competitive advantage for the NSSR RS programme
6. More Brand Assertion, Brand Satisfaction, Brand Stability and Brand Scalability

Limitations of Market penetration strategies

1. Does not manage market dependency always
2. Does not mitigate risk of market saturation
3. Repeated marketing can cause customer fatigue
4. Risk of competitive reaction
5. Sometimes narrows focus for new or emerging markets

To offset the potential downsides mentioned above, it is sustainable to use market penetration alongside other growth strategies like product development, market development, and diversification. AOEC finds that Key Opinion Leadership and NSC Certified Respondent focus can mitigate the limitations mentioned.

As a starter, calculation of Market Penetration rate (MPR) is done using the following equation but tools like Market Explorer help.

$$\text{MPR} = (\text{Number of customers using product or service} / \text{Total Addressable Market}) \times 100$$

BRAND EQUITY ESSENTIALS

Meaning of Market Penetration

Market penetration is a measure of how much a product or service is being used by target customers compared to the total estimated market for that product or service.

Market penetration also relates to the number of potential customers that have purchased a specific company's product instead of a competitor's product.

Market penetration is a ***measure of the reach and sales of a brand, product, or service*** within an existing market.

Brand Equity and its Sensitized competitiveness for

- Driver Fitness
- Vehicle Fitness
- Road system understanding
- Alpha Assistance
- Twin Timeline Monitors

.NSSR RS
VISION

Key contributors for brand excellence are:

Year 2025: Sensitized competitiveness with frameworks such as

- a. Design for dealership performance
- b. Connected & Responsive Quality of service enablers
- c. New BI & CQI led Deep Interaction (DIL) links
- d. Improved sales & marketing, service operations and process efficiency
- e. Key opinion led nutshell inventory, parts management and disposal
- f. Key opinion led management of demand and supply
- g. Key opinion led Sustainable development and growth

Ask for our NSSR RS Programme details
for 2025

SALES AND MARKETING ESSENTIALS

Brief on the 6 Vital ingredients to win business

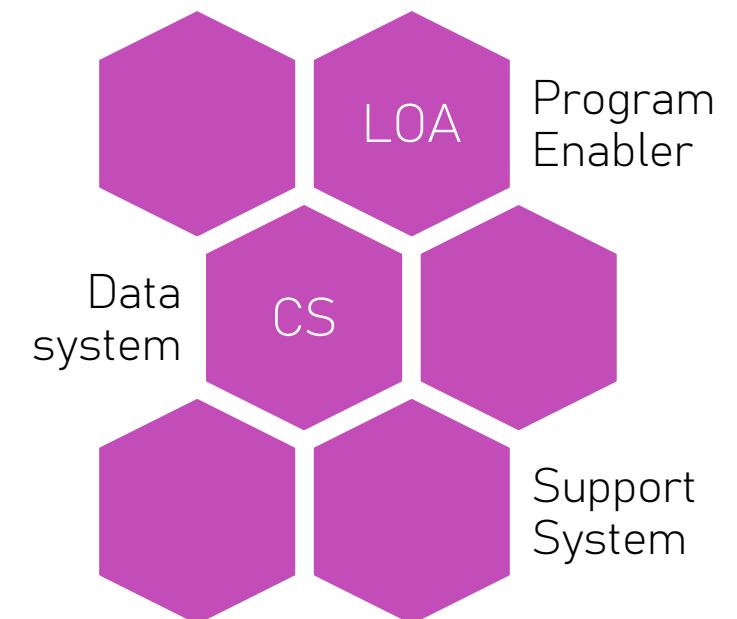
- Sound and Relevant business knowledge
- Competitive industry knowledge
- Awareness of company's policy, key departments and people
- Accountable products/services knowledge
- Sales skills of the modern era
- Positive and enthusiastic attitude to earn client's trust, relate to product / service need with customer-oriented synergy, also address circumstantial need

GROWTH AREAS FOR THE NSSR RS VISION

- Customer engagement
- Understanding of customer needs & benefit analysis
- Responsive dealership and service management
- Analysis of Functional Safety or crash worthiness of vehicles in context of accidental repairs or incidence evaluation
- Effectively coordinating dealership, service-operations, systems and processes to sell the existing and upcoming models
- Deploying a NSSR RS Vision enabled GII programme and Unifying Showcase Help Desk (USHD) to implement all of the above and accentuate the brand

Unifying Showcase

DEALERSHIP/SHOWROOM PAIN-POINTS AND BUSINESS RESEARCH SPECIFIC AREAS


- Improved USHD specific Customer engagement
- Improved USHD specific First Contact data recording
- Improved Vehicle Sheet/Details Information
- Effectively coordinating QCD (**Quality, Cost and Delivery** Management) for dealership, service-operations, systems and processes
- NSSR RS Vision Discerner for strategies to incorporate the **NSSR RS PROGRAMME**
- Responsive CRM based data recording/analysis
- Basal Pain point specific Management Accounting
- NSSR RS Vision Discerner driven brand image and brand equity development

SERVICE CENTRE/WORKSHOP PAIN-POINTS AND BUSINESS RESEARCH SPECIFIC AREAS

- CRM dashboard of customer's vehicle experience (part of the consumer model)
- CRM dashboard of customer's easy ownership experience (part of the consumer model)
- CRM dashboard of dealer's experience (part of the producer model)
- Basal spare parts management experience (part of the producer-consumer model)
- Voluntary Crashworthiness and safety analysis with accidental repairs or incidence evaluation
- GII Profile based scorecard of experience for the forward lifetime theory (part of the emerging NSSR RS Programme, or its incorporation dynamics)

NSSR RS HUB - FUTURE CONNECTED ANALYTICS

APPENDIX A (NSSR RS Beneficial Branding)

Red: Primary components G: Secondary components Y: Tertiary components and B: Timeline interactive components

YOUR VEHICLE SHEET

Vehicle Sheet

- A. Exteriors
- B. Interiors
- C. Engine and Performance
- D. **Battery and Battery Management System***
- E. **Electric Motor and Motor Controller***
- F. Safety
- G. Comfort and Convenience
- H. Seats and Upholstery
- I. Entertainment/Multimedia
- J. Other Features and Specifications
- K. Onboard Diagnostics
- L. *Added systemic intelligence (plus **editioned** Timeline Monitors)*

** For Electric Vehicles and Hybrids*

Q 1

Q 2

Q 3

Q 4

S: strategic T:Tactical

O: Operational FC Future Connected:
(Systemic Intelligence)

In-Time DIL

Increasing Risk

S
T
O
F
C

Q1

Q2

Q4

Q3

Editioned

Systemic intelligence

YOUR VEHICLE DETAILS

Vehicle Details

Vehicle Identification Number/ Vehicle Registration Number:

Make:

Type:

Year

Model & Variant:

NSSR RS Quadrants: SI
(Q1/Q2/Q3/Q4)

Colour:

Petrol/Diesel/Electric/Hybrid

YOUR VEHICLE DETAILS

Vehicle Information:

Engine power (kW):

Engine number/code:

Chassis number/code:

Paint and Bodywork code:

Recommended engine oil:

OBD2 version:

NSSR RS DIL Edition (WIP):

YOUR VEHICLE DETAILS

Vehicle Details

Nutshell inventory (for any Deep Interaction Linking):

Classification as per vehicle sheet (indexed as A to L)	Supplier code	Part code and Part description	Part fitness categories for (SAAT) Service Anywhere Anytime Ticketing or Suitability
Exteriors (NSSR RS Q2)			<input type="checkbox"/> Quality of information <input type="checkbox"/> Quality of Process <input type="checkbox"/> Quality of Outcome <input type="checkbox"/> Quality of Service <input type="checkbox"/> Quality Loss Function Analysis
Interiors (NSSR RS Q2)			<input type="checkbox"/> Quality of information <input type="checkbox"/> Quality of Process <input type="checkbox"/> Quality of Outcome <input type="checkbox"/> Quality of Service <input type="checkbox"/> Quality Loss Function Analysis
Engine and Performance NSSR RS Q1)			<input type="checkbox"/> Quality of information <input type="checkbox"/> Quality of Process <input type="checkbox"/> Quality of Outcome <input type="checkbox"/> Quality of Service <input type="checkbox"/> Quality Loss Function Analysis

YOUR VEHICLE DETAILS

Vehicle Details

Nutshell inventory (for any Deep Interaction Linking):

Classification as per vehicle sheet (indexed as A to L)	Supplier code	Part code and Part description	Part fitness categories for (SAAT) Service Anywhere Anytime Ticketing or Suitability
Battery and Battery Management System* NSSR RS Q1)			<input type="checkbox"/> Quality of information <input type="checkbox"/> Quality of Process <input type="checkbox"/> Quality of Outcome <input type="checkbox"/> Quality of Service <input type="checkbox"/> Quality Loss Function Analysis
Electric Motor and Motor Controller* (NSSR RS Q1)			<input type="checkbox"/> Quality of information <input type="checkbox"/> Quality of Process <input type="checkbox"/> Quality of Outcome <input type="checkbox"/> Quality of Service <input type="checkbox"/> Quality Loss Function Analysis

YOUR VEHICLE DETAILS

Vehicle Details

Nutshell inventory (for any Deep Interaction Linking):

Classification as per vehicle sheet (indexed as A to L)	Supplier code	Part code and Part description	Part fitness categories for (SAAT) Service Anywhere Anytime Ticketing or Suitability
Safety (NSSR RS Q3)			<input type="checkbox"/> Quality of information <input type="checkbox"/> Quality of Process <input type="checkbox"/> Quality of Outcome <input type="checkbox"/> Quality of Service <input type="checkbox"/> Quality Loss Function Analysis
Comfort and Convenience (NSSR RS Q3)			<input type="checkbox"/> Quality of information <input type="checkbox"/> Quality of Process <input type="checkbox"/> Quality of Outcome <input type="checkbox"/> Quality of Service <input type="checkbox"/> Quality Loss Function Analysis
Entertainment/ Multimedia (for example integration of new ideas being proposed) NSSR RS Q3)			<input type="checkbox"/> Quality of information <input type="checkbox"/> Quality of Process <input type="checkbox"/> Quality of Outcome <input type="checkbox"/> Quality of Service <input type="checkbox"/> Quality Loss Function Analysis

YOUR VEHICLE DETAILS

Vehicle Details

Nutshell inventory (for any Deep Dive)

Classification as per vehicle sheet (indexed as A to L)	Supplier code	Part code and Part description	Part fitness categories for (SAAT) Service Anywhere Anytime Ticketing or Suitability
Other Features and Specifications (for example Key Convenience Fuel Quality Assistance) (NSSR RS Q4)			<input type="checkbox"/> Quality of information <input type="checkbox"/> Quality of Process <input type="checkbox"/> Quality of Outcome <input type="checkbox"/> Quality of Service <input type="checkbox"/> Quality Loss Function Analysis
Onboard Diagnostics (NSSR RS Q4)			<input type="checkbox"/> Quality of information <input type="checkbox"/> Quality of Process <input type="checkbox"/> Quality of Outcome <input type="checkbox"/> Quality of Service <input type="checkbox"/> Quality Loss Function Analysis
<i>Added systemic intelligence (for e.g. Emission Warranty System, new DIL and OTA subscriptions) (NSSR RS Q4)</i>			<input type="checkbox"/> Quality of information <input type="checkbox"/> Quality of Process <input type="checkbox"/> Quality of Outcome <input type="checkbox"/> Quality of Service <input type="checkbox"/> Quality Loss Function Analysis

YOUR VEHICLE DETAILS

Vehicle Details

Type of service for the vehicle:

Type of service	:Planned Maintenance for SAAT (fill details)	Preventive / Corrective Maintenance for SAAT (fill details)	Deep Interaction Link or Lifecycle Maintenance for SAAT (fill details)
Free service			
Paid service			
Subscription based services (new USHD / NSSR RS Q- Dashboards)			
Service plan / package based service			
Priority service			
Time of the year Programme specific service			

YOUR VEHICLE DETAILS

Typical Vehicle Management policies

1. A reactive maintenance strategy results in the reduction of the lifetime of a vehicle and also adds expense or costs in maintaining and using a vehicle.
2. Predictive maintenance helps overcome this issue.
3. Among the different types of maintenance
 - (a) Preventive maintenance is performed after a fault has occurred. It is used for infrequent failures and for parts upgradation
 - (b) Corrective maintenance is performed as breakdown maintenance
- © Predictive maintenance uses the analysis of the current condition of the vehicle to predict a failure
4. For vehicle health monitoring the typical mechatronic systems and subsystems are
 - (a) Engine
 - (b) Gearbox
 - (c) Brakes
 - (d) Ignition
 - (e) Fuel injection
 - (f) Emission
 - (g) Cooling
 - (h) Battery
 - (i) Sensors
 - (j) Actuators
 - (k) Other subsystems associated with electromechanical processes

YOUR VEHICLE DETAILS

Typical Vehicle Management policies

5. Engine Control Unit (ECU) controls sensors and actuators to screen and diagnose faults or problems

The ECU is also associated with the Controller Area Network (CAN) through which a distinctive subsystem and driver communicate with each other

ECU communication is done via a high-level diagnostic protocol i.e the OBD2 and UDS

The OBD2 protocol allows the vehicle to diagnose and self-report codes

The OBD framework allows a vehicle owner or repair professional to access diagnostic data about the current condition of the subsystems

The UDS provides specific details

Thereon system maintenance is done via a diagnostic and prognostic ability related to the current state and futuristic state of the system or subsystem

YOUR VEHICLE DETAILS

Typical Vehicle Management policies

6. Remote health monitoring involves the monitoring of different systems and subsystems remotely and using prognostics to predict faults in advance
7. Sequential Pattern Learning Algorithm – the algorithm learns patterns from warranty data of the vehicle and converts these patterns to a rule based expert system that helps diagnose conditions or use fault patterns
8. COSMO (Consensus self-organized models for fault detection) helps increase vehicle and parts/systems lifetimes
9. BRACID (Bottom up induction of rules and cases for imbalanced data) to deal with imbalanced data via learning classifiers
10. Kalman model to monitor vehicle health via sensor data for fault prediction and engine abnormal behavior via anomaly detection
11. Least Square Support Vector Machine (SVM) classifier for diagnostics and remote

YOUR VEHICLE DETAILS

Typical Vehicle Management policies

12. Predictive maintenance via the use of a vehicle database for storing maintenance records of vehicles visiting a workshop
13. vehicle monitoring system that monitors driver activity and status of engine via SMART phones for communications between the vehicle and back end server
14. Comprehensive analysis of vehicle's on-board and off-board data using supervised and unsupervised learning techniques usin a telematics gateway
15. Multi-sensor fusion technique that monitors vehicle health using oil data and vibration signals

YOUR VEHICLE DETAILS

Typical Vehicle Management policies

16. VMMS – A real time vehicle monitoring and fault prediction system , which diagnoses main subsystems such as (a) Ignition (b) Exhaust (c) Fuel injection (d) Cooling and Other mechatronic subsystems

It uses machine learning techniques such as Decision tree, Support Vector Machine, K-Nearest Neighbor and Random Forest

It uses a SMART Phone App, OBD scanner, Bluetooth protocol to communicate DTC from scanner to SMART Phone and wireless mobile data communication from SMART Phone to the back-end server

It uses a classification algorithm for pattern learning

It relies on push notifications of abnormal condition via SMART Phone alerts or emails

17. The cost constraints in using sensor data based systems is the need for large memory space, high processor speed and custom made SMART Phone Apps

YOUR VEHICLE DETAILS

18. Deep Interaction Link or Lifecycle Maintenance for SAAT

- As maintenance is mostly a reactive strategy for a vehicle pr fleet owned by a customer, we find certain aspects are important such as
 - (a) Predicting of remaining useful lifetimes of vehicles and their parts/ components
 - (b) Assessing the effect of remaining useful lifetimes on the cost of repairs or replacements
 - (c) Considerations of the safety of using a vehicle whose parts/ components need periodic maintenance
 - (d) Optimization of the maintenance schedule of the fleet to support objectives such as
 - (1) reduced expenses
 - (2) efficient resource utilization
 - (3) consistent service delivery via the fleet
 - (4) reduced carbon footprint
 - (5) high-performance customer experience of owning, selling or creating the brand
 - (6) TGMB KOL ANALYZERS

YOUR VEHICLE DETAILS

18. Deep Interaction Link or Lifecycle Maintenance for SAAT

- For optimizing a maintenance schedule, it is important to acknowledge that each vehicle has certain parts or components that have to be maintained in a predictive and/or preventive manner based on their respective damage from wear & tear and subsequent reduction in remaining useful lifetimes.
- To optimize maintenance schedules, the common practice is to use Multi- objective Evolutionary Algorithms (MOEA) to find the Pareto optimal set of schedules
- To understand this better, in order to predict or heuristically-schedule maintenance, such an algorithm must
 - (1) identify the usage of the vehicle and driving tasks
 - (2) use a rolling time window horizon to predict the remaining useful lifetimes of parts or components
 - (3) minimize process changes between the previous maintenance schedule and the next
 - (4) help maintenance-specific estimation, spares management, and other service analytics

YOUR VEHICLE DETAILS

18. Deep Interaction Link or Lifecycle Maintenance for SAAT

- From the (dealer's) Service Centre's or Workshop's point of view, the considerations that matter are
 - (1) maintenance estimation
 - (2) fixed setup costs and fixed schedule costs
 - (3) preparation of the Workshop for the nature of work
 - (4) resource allocation for the total workload
 - (5) spares (availability) management to control the expected number of failures or faults that the vehicle or fleet of vehicles may experience on the road
 - (6) optimization of the next maintenance schedule to reduce or control maintenance costs and workload
 -

YOUR VEHICLE DETAILS

18. Deep Interaction Link or Lifecycle Maintenance for SAAT

- A real-time concern is that from the time a maintenance schedule is released for a vehicle or vehicle fleet, continuous changes could occur to
 - (1) the vehicle condition
 - (2) prediction of the remaining useful lifetimes of the parts or components
 - (3) responsiveness of the maintenance schedule and its objectives of meeting the TGMB benefits of buying, using and owning a vehicle
 - (4) cost variance in terms of setup costs, maintenance costs and penalty costs
- The emerging degradation of a high investment EV or fleet of EV(s), needs in-time editioning by the manufacturer, where the end of lifecycle or need for costlier maintenance will need NSSR RS quadrants to be incorporated into the design and architecture of the EV to permit NSSR RS value enabling during and after expected lifetimes. The NSSR RS value enabling we propose is called NSSR RS Asset Creation to enable D2L or CQI/ fitness management

YOUR VEHICLE DETAILS

18. Deep Interaction Link or Lifecycle Maintenance for SAAT

- Here penalty costs are based on the assumption that
 - (1) if a part or component is serviced before it's due date the penalty cost is equal to the full maintenance costs
 - (2) if the component is serviced on the due date the penalty costs are zero
 - (3) if the component is serviced after the due date, failure expectation increases to lead to selective parts replacement or upgradation where the working out of penalty costs will need to add spares costs too

YOUR VEHICLE DETAILS

- 18. Deep Interaction Link or Lifecycle Maintenance for SAAT
- Highlight of degradation seen in a vehicle
- **Reference:** Vehicle Inspection methodology used today
- (1) Degradation in the oil filter and/or air filter
- (2) Degradation in the performance of suspension and springs
- (3) Degradation of brake pads
- (4) Degradation of tyres
- (5) Degradation of chassis and it's expected condition
- (6) Degradation of engine
- (7) Degradation of the manual gear system or automatic transmission
- (8) Degradation in vehicle's ingress protection from dust and water
- For optimizing maintenance schedules, vehicle inspection status and estimation of damage or degradation is known to help.
- Here degradation of components (numbered 2, 3, 4, 5, and 6) can be calculated based on physical condition (or wear and tear) but in case of components (numbered 1 and 7) degradation occurs due to lack of periodic counter measures (or preventive maintenance).

YOUR VEHICLE DETAILS

NSSR RS Analytics

Deep Interaction Links for Service Quality Model:

Type of NSSR RS Enabler	Asset Creation Analytics	Contingency Planning Analytics	STRIDE codification Analytics
Vehicle Job Card	<input type="checkbox"/> Need this	<input type="checkbox"/> Need this	<input type="checkbox"/> Need this
CRM Scorecard	<input type="checkbox"/> Need this	<input type="checkbox"/> Need this	<input type="checkbox"/> Need this
CRM Dashboard	<input type="checkbox"/> Need this	<input type="checkbox"/> Need this	<input type="checkbox"/> Need this
CCMA Dashboard	<input type="checkbox"/> Need this	<input type="checkbox"/> Need this	<input type="checkbox"/> Need this
Procurements Dashboard	<input type="checkbox"/> Need this	<input type="checkbox"/> Need this	<input type="checkbox"/> Need this
DIL Quadrant Q-Dashboards	<input type="checkbox"/> Need this	<input type="checkbox"/> Need this	<input type="checkbox"/> Need this

NSSR RS HUB - FUTURE CONNECTED ANALYTICS


APPENDIX B (NSSR RS Beneficial Branding)

INVENTORY TURNOVER AND STOCK KEEPING POLICIES

- Deep Interaction Link or Lifecycle Maintenance for SAAT
- **Spares Parts Inventory Management**
- DIL Analysis can help make the organization's inventory systems more responsive
- Though a dealership competes with other same brand dealerships this function of spare parts inventory management must be measured, monitored and managed from an individual dealership point of view.
- This point of view depends upon the current automobile market, its economics and the responsiveness needed from the business's vision and operational practices
- Managing the spare parts inventory is a complex system of processes and responsibilities for driving ROI, profitability, performance and customer retention

INVENTORY TURNOVER AND STOCK KEEPING POLICIES

- Deep Interaction Link or Lifecycle Maintenance for SAAT
- **Spares Parts Inventory Management**
- The spare parts department deals with challenges such as
 - 1. Vehicle maintenance & repair intervals and requirements
 - 2. Increased dynamics or competition from the after-market, the grey market and non-OEM parts suppliers
 - 3. Increasing technology and replacements costs of parts
 - 4. Impact of parts inventory on workshop productivity, and digitally-connected service centres & shop floors etc
 - 5. Impact of eCommerce or online selling on automobile spare parts supply or sourcing

INVENTORY TURNOVER AND STOCK KEEPING POLICIES

- Deep Interaction Link or Lifecycle Maintenance for SAAT
- Spares Parts Inventory Management
- **Observations**
- For sustainable development and growth, the spare parts management systems must focus on 3 areas
 - 1. Service levels
 - 2. Profitability
 - 3. Dealership sales
 - 4. NSSR RS/D2L Value Addition

INVENTORY TURNOVER AND STOCK KEEPING POLICIES

- Deep Interaction Link or Lifecycle Maintenance for SAAT
- **Spares Parts Inventory Management**
- Here these service levels help a dealership improve overall customer retention and in time increase market penetration via vehicles sales or repeat purchases from the dealership
- Some key metrics for improved inventory management and profitability of business are
 - 1. Days supply
 - 2. Fill rate
 - 3. Obsolescence
 - 4. Non-stock investment
 - 5. Non-stock parts usage in service or repairs
 - 6. Emergency purchases
 - 7. Lost customer numbers

INVENTORY TURNOVER AND STOCK KEEPING POLICIES

- Deep Interaction Link or Lifecycle Maintenance for SAAT
- In these scenarios any definition or redefinition of parts obsolescence must concern itself with associated issues such as
 - (1) Repair delays
 - (2) Additional handling
 - (3) Emergency purchases
 - (4) (Loaned) Vehicle policy expenses
 - (5) Costs to productivity
 - (6) Reduction in customer satisfaction and retention leading to reduced overall profitability

NSSR RS HUB - FUTURE CONNECTED ANALYTICS

APPENDIX C (NSSR RS BENEFICIAL Branding)

DEEP
INTERACTION
LINK FOR
AUTOMOBILES
AND BRANDS

NSSR RS P'rogramme

INNOVATION FOR AUTOMOBILES AND BRANDS

- Manufacturer connected dealers or independent dealers in a city, neighborhood and strategic location are most frequented by people of different backgrounds.
- Along with any interest for a brand/model/variant, most of the people select automobiles based on a
- A. Desire to own or Cause specific response OR B. Intelligently Guided response, where the important quality attributes are
- 1. Vehicle details 2. Value for money 3. Aesthetics 4. Perceived Quality 5. Forward Lifetime theory, 6. Brand Value pertaining to the vehicle detailing, or insights for any voice of customer information such as unique features of the brand, the model, the variant, with any ease of ownership grade (we call this Deep interaction for the Juran Trilogy, as this is seen as inferential rather than today's custom previews or showcasing of analysis) for the targeted market, the customer segment, the manufacture-AND/OR assemble-AND/OR import to sell programme, the vision specific dealership and supplier networking, the-design for service-to-customers processes, and the assisted delayering and stake-holding of any likelihood of concerns for the diversity in customer expectations

INNOVATION FOR AUTOMOBILES AND BRANDS

- For the mobility needed today, Expectations of vehicle detailing, connected analytics information and ease of ownership based quality attributes are emerging to be important for brand identity and brand-value-stream-mapping.
- AOEC's idea or innovation is to add a Deep Interaction Link (label or tag) to the automobile/part/component/product in its original vehicle branding, in order, to help a manufacturer/dealer/supplier/stakeholder/customer enter the link into a web browser, or NSSR RS unifying showcase to review an Integrated principle for quality control factors and attributes.
- The integrated principle for quality control could on incorporation for an automobile/part/component/product add pertinent or deep interaction attributes like reliability, procurement enablers, process level, and verification attributes like the doing business factors, service quality model, service anywhere anytime norms like nutshell inventory, part fitness, vehicle management, ticketing and innovative "voice of customer" features that help infer more about the right vehicle suitability, right advertising, right channelling, right influencing and if possible inferential quality analysis like links to reviews, vehicle lifecycle-assessments, focus groups, staff/employee/spokesman reviews, .Deep interaction "TGMB unifying-points" that evaluate the principle for quality control.
- The Deep Interaction Link (label or tag) is based on the Juran Trilogy of implementing Quality Planning, Quality Control and Quality Improvement to manage the cost of poor quality or quality recognition and brand equity enablers for vehicle suitability for voice of the customer factors, and global & mutually beneficial attributes

INNOVATION FOR AUTOMOBILES AND BRANDS

- The Deep Interaction Link will also need the dealer to integrate additional activities
 - ❑ Complaints redressal for NSSR RS Programmes, brand equity or ease of ownership
 - ❑ Product liability details for NSSR RS Programmes, brand equity or ease of ownership
 - ❑ Product recall, returns for NSSR RS Programmes, brand equity or ease of ownership
 - ❑ Management of waste and with or without salvaging of items that can be reused/recycled, to manage the issues of Loss of reputation, loss of goodwill, loss in business share, delay or stoppage of supply
- The emphasis for this innovation is to help dealers incorporate BI/CQI facts based or quality based decision making, relationship management for the principle for quality control, quality control tools and lean principle tools that reduce gaps for asset accountability, defects, variance, waste in what is seen as responsive & repetitive need for quality emphasis or call to plan emphasis, when the quality standards are not always adherent to multi-regulatory interests.

INNOVATION FOR AUTOMOBILES AND BRANDS

- The Deep Interaction Link will help work across brands/silos where this innovation can associate a Fast Track PRM Pertinence, Action Centre, Unifying Showcase Help Desk (USHD) and NSSR RS Management Development Programmes that dealerships and their networks can intend to take up as case study or as different solution finding initiatives.
- Continual focus can add preponderance of possibilities, and business insights of tomorrow into relevant classes of automobiles/parts/components/products/goods.
- Ask for a case study or solution finding, by contacting us on M 9342867666 or by emailing us on venkataoec@gmail.com
- Our NSSR RS Unifying Showcase URL for this <https://venkataoec.wixsite.com/deeper-interaction-a>
- Our indications are that global automotive operating system market will need to use a foundation called the NSSR RS unifying fundamentals for the projectization of any releases or versioning

INNOVATION FOR AUTOMOBILES AND BRANDS

- NSSR RS unifying fundamentals
- Safer Commuting is one of the main unifying fundamental for automobile manufacturers and dealerships. The interest is to implement the same via a NSSR RS Dashboard framework.
- AOEC proposes a Safer Commuting related Unifying Showcase Help Desk for this insight.
- We will be updating more details on our deep interaction link website. The TGMB Unifying Showcase URL for this is <https://venkataoec.wixsite.com/deeper-interaction-a>
- AOEC summarizes the problem description for unified safer commuting to be as follows.

INNOVATION FOR AUTOMOBILES AND BRANDS

- Problem description: Automobile Brand Equity Development Programmes for Safer Commuting will need to develop more hazards warning systems or imagery services to achieve a concept called Call-to-attention-mitigation of risks known to occur daily or incidentally due to road systems.
- The Safer Commuting solution will need to define the value stream mapping for this Call to attention mitigation of road systems risks with knowledge / key opinion or Call-to-attention enabling Road System PI(s), KPI(s) or PI independent Kanban First Views for road systems affected by severe driving conditions.
- Severe driving conditions can be designed by Serial Numbered Focus (SLNF) Analytics, or Showcase Numbered Focus (SWNF) Analytics, or Docked View Numbered Focus (DVNF) Analytics
- Further more, today most automobile manufacturers deliver OTA packages for connected vehicle features. The Safer Commuting solution can be incorporated via OTA like connected vehicle themes, that are developed for (1) an evaluated Road System/Route or for (2) a Safer Commuting theme like the LOD or Map View enabled Call-to-attention-mitigation of risks for severe driving conditions OTA stands for Over The Air networking, LOS stands for Line of Sight

INNOVATION FOR AUTOMOBILES AND BRANDS

- Some (LOS or PI/Map View related) Severe driving conditions that can be incorporated into the

Driving in dusty road conditions

Driving in road systems degraded by salt/corrosive toxins/ emissions

Driving in the condition of inflowing dust/sand/ water

Driving in mountainous areas

Towing related driving conditions

Driving in afflicted conditions (like low fuel or undue contingency or contaminated fuel, degraded parts, poor or damaged head lights, ...)

Driving in frequent stop and start conditions or brake affected conditions

Driving in sunroof affected conditions

Driving in wiper, or windshield affected conditions

Driving in dealer-network-affected conditions

Driving in Emergency Services affected conditions

Driving in out-of-network-coverage conditions

Driving in reverse gear specifically conditions

Driving in journey parameter affected conditions

Driving in non-showcased conditions

INNOVATION FOR AUTOMOBILES AND BRANDS

- Conceptual Recommendation services to manage the listed severe driving conditions
- D1. Quality of information for any Call to attention perspective/highlight as a recommendation/project/case study for the severe driving condition
- The recommendation could be Road system metrics, KP(s)I, Surveys, Interviews, Engagement methodologies. The project/ case study could be one of the many stored in the NSSR RS Cloud
- D2. Quality of process for any Call to attention perspective/highlight as STRIDE codification of safe commuting influencers as details/case studies/projects for the severe driving condition
- D3. Trouble shooting for any Call to attention perspective/highlight as Perspective imagery or Kanban First Views. as perspectives/case studies/projects for the severe driving condition
- D4. The effectiveness of such recommendation services can be sustainably evaluated via a constructive report called Quality of Safer Commuting Strategic-Tactical-Operational intelligence for impact ad frequency of risk/hazard/incidence due to the severe driving condition

NSSR RS HUB - FUTURE CONNECTED ANALYTICS

- AOEC plans to develop the deliverables D1, D2, D3 and D4 as proof of concept solutions, where the same will be designed on the basis of select real world scenarios.
- The benefits of the proposed solution that can be integrated into a NSSR RS Monitor, or codified into a SMART Phone or Vehicle Multimedia System are expected to be as follows
 - ❑ Improvement of the vehicle's performance, handling and focus analytics for safer commuting
 - ❑ Delivery of Kanban First View functionality for different features like Customer Engagement Assistance, BPI Assistance, Sourcing Assistance, CCMA Assistance, DIL Payload Box and Drop for Service Anywhere Anytime experiences and USHD Recommendation services)
 - ❑ Adding/Receiving/Relaying of updated/connected call to attention imagery or perspective imagery.
 - ❑ Provide NSSR RS Hub specific USHD Recommendation services for Safer Commuting

NSSR RS HUB - FUTURE CONNECTED ANALYTICS

- AOEC plans to develop the deliverables D1, D2, D3 and D4 as proof of concept solutions, where the same will be designed on the basis of select real world scenarios.
- Some major key players for the global automotive operating system market are prominent players like • AUTOSAR • Automotive Grade Linux • BlackBerry Limited • BMW AG • Continental AG • General Motors Company • Green Hills Software LLC • Mentor Graphics Corporation • Mercedes-Benz AG (Daimler AG) • MONTAVISTA SOFTWARE, LLC • Neusoft Corporation • Thunder Software Technology Co., Ltd • Volkswagen AG • Wind River Systems, Inc. • Baidu, Inc. • Ford Motor Company • GENIVI Alliance • Microsoft Corporation • Tesla Inc. • Toyota Motor Corporation